Minimization of Entransy Dissipations of a Finned Shell and Tube Heat Exchanger

Authors

  • Mahmood Chahartaghi Department of Mechanical Engineering, Shahrood University of Technology, Shahrood,Iran.
  • Sayed Ehsan Alavi Department of Mechanical Engineering, Shahrood University of Technology, Shahrood,Iran.
Abstract:

Improving heat transfer and performance in a radial, finned, shell and tube heat exchanger is studied in this study. According to the second law of thermodynamics, the most irreversibilities of convective heat transfer processes are due to fluid friction and heat transfer via finite temperature difference. Entransy dissipations are due to the irreversibilities of convective heat transfer. Therefore, the number of entrancy dissipation is considered as the optimization objective. Thirteen optimization variables are considered, such as the number of tubes, tube diameter, tube length, fin height, fin thickness, the number of fins per inch length of tube and baffle spacing ratio. The “Delaware modified” technique is used to determine heat transfer coefficients and the shell-side pressure drop. In this technique, the baffle cut is 20 percent. The results show that using genetic algorithm the optimization can be improve the heat transfer by 13 percent and performance of heat exchanger increased by 18 percent. In order to show the accuracy of the algorithm the results compared to the particle swarm optimization.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of baffle oientation on shell tube heat exchanger performance

In this paper, fluid flow and heat transfer in the laboratory (small size) shell tube heat exchanger are analysed by computational fluid dynamic software. In this type of shell tube heat exchanger baffles with different angles of rotation: 00 (horizontal segmental baffle), 150 (from horizontal), 300, 450, 600, 750, 900 (vertical segmental baffle) is used. Effect of baffle orientation on shell t...

full text

Numerical Studies on the Performance of Finned-Tube Heat Exchanger

Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc... Finned-tube heat exchangers are common devices; however, their perfo...

full text

A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...

full text

Nonlinear Control Of A Shell And Tube Heat Exchanger

The paper deals with design and simulation of nonlinear adaptive control of a shell and tube heat exchanger. The method is based on factorization of the controller on a nonlinear static part and an adaptive linear dynamic part. The nonlinear static part is derived using inversion and subsequent exponential approximation of simulated or measured steady-state characteristics of the exchanger. The...

full text

Optimization of Finned-Tube Heat Exchanger with Minimizing the Entropy Production rate

A compact fin-tube heat exchanger is used to transfer current fluid heat inside the tubes into the air outside. In this study, entropy production and optimized Reynolds number for finned-tube heat exchangers based on the minimum entropy production have been investigated. As a result, the total entropy of compact heat exchangers, which is the summation of the production rate of fluid entropy ins...

full text

Investigating Tubes Material Selection on Thermal Stress in Shell Side Inlet Zone of a Vertical Shell and Tube Heat Exchanger

In this study, the effect of the tube material on the thermal stress generated in a vertical shell and tube heat exchanger is investigated. Shell and tube heat exchangers are the most common heat exchangers used in industries. One of the most common failures in these exchangers in the industry is the tube failure at the junction of the tube to tubesheet. When the shell side and the tube side fl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue 2

pages  246- 255

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023